Leftmost Digit
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 11305 Accepted Submission(s): 4329
Problem Description
Given a positive integer N, you should output the leftmost digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow. Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the leftmost digit of N^N.
Sample Input
2
3
4
Sample Output
2
2
Hint
In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2. In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2. Author
Ignatius.L
// x ^ x= 10^(x*lg(x))=10^(整数部分+小数部分) ;则x ^ x的最高位是由小数部分决定的(因为10的整数次幂不会影响最高位,只在最末位加0)。 // 去掉整数部分(floor函数向下去整)得到10^(小数部分)最高位即是所求……
1 //x ^ x= 10^(x*lg(x))=10^(整数部分+小数部分) ; 2 #include3 #include 4 5 int main() 6 { 7 int T; 8 scanf("%d",&T); 9 while(T--)10 {11 int n,t;12 double a;13 scanf("%d",&n);14 a = log10((double)n);15 a -= (int)a;16 //n*a的结果可能很大,所以先减去整数部分再乘 17 a = n*a;18 t = (int)a;19 a -= t;20 t = (int)pow(10.0,a);21 printf("%d\n",t);22 }23 return 0;24 }
总结:数学题,log的运用,掌握的不行,需多练习